

CDM

Collaborative Decision Making

Future Concepts of Flow Management = FCTF =

2015 Spring CDM Meeting

Mark Holben, FAA ATCSCC Don Wolford, United Airlines

What is FCT?

- formed to address longer term (12-24 months) CDM/ATFM capabilities' integration and an operational concept of using integrated data, procedures and concepts.
- charged with the exploration of combinations of concepts and capabilities identified through the CSG as well as other venues and the development of enhanced CDM tools.

FCT Tasking 56: Space Operations and Unmanned Aircraft Systems NAS Study

Space Operations office at the ATCSCC

• Joint Space Operations Group (JSpOG)

Office of Commercial Space Transportation (AST)

• One of 4 FAA lines of business

Commercial Space Operations

Orbital launch vehicles

- Commercial and DoD use
- Payloads include
 - Supplies for the ISS
 - Communication satellites

Orbital launch vehicles 2014 Launches and Re-entries 25 Launches (14 Non-commercial, 11 commercial) 3 Reentries (controlled)

2015 Launches and Re-entries 26 Launches (12 Non-commercial, 14 Commercial) 4 Reentries

Launch/Recovery Operations

Aircraft Hazard Area

Primarily a manual process that is very time consuming and very restrictive. Involves issuing a NOTAM and segregating air traffic from the impacted area.

Working on automating this process and making it more dynamic / less restrictive.

Suborbital Reusable Vehicles

Commercially developed, reusable space vehicles that travel to the edge of space, about 62 miles (100km) above the Earth.

Vertical or Horizontal launch/recovery

Suborbital Reusable Vehicle Markets

COMMERCIAL HUMAN SPACEFLIGHT

Human spaceflight experiences for tourism or training

Individuals Corporate Contests and promotions In-space personnel training

AEROSPACE TECHNOLOGY TEST AND DEMONSTRATION

Aerospace engineering to advance technology maturity or achieve space demonstration, qualification, or certification Demonstrations requiring space/launch environment Hardware qualification and test

BASIC AND APPLIED RESEARCH

Basic and applied research in a number of disciplines, leveraging the unique properties of and access to the space environment and microgravity Biological and physical research

Earth science Space science Human research

MEDIA AND PUBLIC RELATIONS

Using space to promote products, increase brand awareness, or film space-related content Film and television

Media, advertising, and sponsorship Public relations and outreach Space novelties and memorabilia

EDUCATION

Providing opportunities to K-12 schools, colleges, and universities to increase access to and awareness of space

> K-12 education University educational missions

REMOTE SENSING

Acquisition of imagery of the Earth and Earth systems for commercial, civil government, or military applications Commercial Earth imagery Civil Earth imagery Military surveillance

SATELLITE DEPLOYMENT The use of SRVs to launch small payloads into orbit

Very small satellite launch

POINT-TO-POINT TRANSPORTATION

Future transportation of cargo or humans between different locations Fast package delivery High-speed passenger transportation (civil) High-speed troop transportation (military)

Source: Suborbital Reusable Vehicles: A 10-Year Forecast of Market Demand. - The TAURI Group

High Altitude Balloons

U.S. Spaceports

FCT Tasking 56

Where do we go from here?

- Make recommendations to the CSG on impact to the NAS
- Seek additional tasking to continue work on this topic and expand into new products and tools.
 - Work with JSpOG on development and validation of new tools.
 - Space data ingested into TFMS and other TM products
 - Prediction tool to minimize NAS impact

UNMANNED AIRCRAFT SYSTEMS

Unmanned Aircraft Systems (UAS) continue to be the most dynamic growth sector within the aviation industry. Once enabled, commercial UAS will have the potential to be a significant component of the national airspace system.

Source: FAA Aerospace Forecast Fiscal Years 2014-2034

Unmanned Aircraft System Test Site Program

On February 14, 2012, Congress mandated the FAA to develop a test site program. Six sites were chosen.

Unmanned Aircraft System Test Site Program

The overall purpose of this test site program is to develop a database along with the operational expertise to enable the safe operation of these aircraft in the NAS.

UAS CATEGORIES

UAS systems under 55 pounds are inexpensive and economically viable for commercial use. The FAA expects that market demand for UAS will occur within the constraints of the regulatory and airspace requirements.

UAS Category	Maximum Weight (Ibs) (MGTOW)	Normal Operating Altitude	Speed (KIAS)	Current/Future Representative UAS
Group 1	0-20	<1,200 AGL		WASP III, BATCAM, Raven, Dragon Eye
Group 2	21-55	<3,500 AGL	<250	Scan Eagle
Group 3	<1320		~250	Silver Fox, Shadow, Neptune,
Group 4	>1320	<18,000 MSL	Any	Predator, Sky Warrior, Hunter, Fire Scout
Group 5	-1020	>18,000 MSL	Airspeed	Global Hawk, Reaper, BAMS, Global Observer,
				N-UCAS

Source: FAA Aerospace Forecast Fiscal Years 2014-2034

UAS CATEGORIES

Once able to legally operate, the FAA estimates roughly 7,500 commercial small (under 55 lbs) UAS will be operating within five years.

UAS Category	Maximum Weight (Ibs) (MGTOW)	Normal Operating Altitude	Speed (KIAS)	Current/Future Representative UAS
Group 1	0-20	<1,200 AGL		WASP III, BATCAM, Raven, Dragon Eye
Group 2	21-55	<3,500 AGL		Scan Eagle
			<250	
Group 3	<1320		200	Silver Fox, Shadow, Neptune,
Group 4	>1320	<18,000 MSL	Anv	Predator, Sky Warrior, Hunter, Fire Scout
Group 5	-1320	>18,000 MSL	Any Airspeed	Global Hawk, Reaper, BAMS, Global Observer,
				N-UCAS

Source: FAA Aerospace Forecast Fiscal Years 2014-2034

FCT Tasking 56

Where do we go from here?

- The UAS market could potentially be a significant impact to the NAS
- Smaller/lighter UAS will likely be managed primarily with procedures and restrictions
- Larger/heavier UAS will need to be integrated into the ATC system and managed like other NAS traffic

AAtS- Aircraft Access to SWIM

Aircraft Access to SWIM will enable enhanced twoway information exchanges between flight operators (to/from the aircraft) and FAA operational personnel and data. ConOps developed based on the 2020 timeframe. AAtS would leverage global technologies such as FIXM, WXXM, and AIXM.

- AAtS would not be used for flight critical command and control information.
- It would not use existing comm systems such as ACARS or DATACOMM, but instead use available commercial broadband installed by the flight operator.

- AAtS would leverage available bandwidth for two way exchange of information that would promote improved situational awareness and decision making.
- Applicable to all phases of flight.
- Completely voluntary by flight operators.
- Available to all flight operators (121, 91, etc.)

- AAtS could be made available through third party interfaces to all flight operators, including those not supported by a FOC/dispatcher.
- FCT is on record stating that any interface offered by FAA be available to any and all flight operators and their vendors.

- AAtS ConOps has developed several use cases.
 - Aircraft transmission of:
 - Non-urgent PIREP data.
 - Updates to flight schedule/ATCFP from operators not supported by a FOC.
 - Transmission and updates to TOS data.
 - Transmission and updates to Flight Object data.

- AAtS ConOps has developed several use cases.
 - Flight Deck reception of:
 - NAS constraint data including traffic management initiatives and TFRs.
 - Near real-time access to Aeronautical info such as NOTAMs or SAA use.
 - Weather info such as CIWS and PIREPS.

- AAtS future use cases.
 - As bandwidth increases, significant data could be automatically transmitted from the aircraft:
 - Weather data including wind, temp, and turbulence.
 - Aircraft weather radar data.
 - Interaction with future versions of PDRR/ABRR/CTOP/CACR.
 - Who owns this data, and how is it distributed?
 - Flight operator?
 - Vendor?
 - Agency?

- AAtS future use cases.
 - As bandwidth increases, significant data could be received by the aircraft:
 - TFDM/ASDE-X Surface Management data.
 - TBFM Metering data.
 - TFMS "total flight path" constraint/delay data.
 - Flight Object user preferences and priorities.

- How does the governance work when there are potentially massive amounts of data being exchanged to/from SWIM?
- Same potential issue in the future when direct connections might exist between broadband and aircraft systems (FMS).
- Will regulatory changes be required to further delineate flight critical information vs. "nice to have" or optional data exchange?

